Efficient derivation of NPCs, spinal motor neurons and midbrain dopaminergic neurons from hESCs at 3% oxygen (2024)

  • Zhao, T. et al. Hypoxia-driven proliferation of embryonic neural stem/progenitor cells—role of hypoxia-inducible transcription factor-1alpha. FEBS J. 275, 1824–1834 (2008).

    Article CAS PubMed Google Scholar

  • Erceg, S., Ronaghi, M. & Stojkovic, M. Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 27, 78–87 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  • Hedlund, E. & Perlmann, T. Neuronal cell replacement in Parkinson's disease. J. Intern. Med. 266, 358–371 (2009).

    Article CAS PubMed Google Scholar

  • Conti, L. & Cattaneo, E. Neural stem cell systems: physiological players or in vitro entities? Nat. Rev. Neurosci. 11, 176–187 (2010).

    Article CAS PubMed Google Scholar

  • Munoz-Sanjuan, I. & Brivanlou, A.H. Neural induction, the default model and embryonic stem cells. Nat. Rev. Neurosci. 3, 271–280 (2002).

    Article CAS PubMed Google Scholar

  • Smukler, S.R., Runciman, S.B., Xu, S. & van der Kooy, D. Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J. Cell Biol. 172, 79–90 (2006).

    Article CAS PubMed PubMed Central Google Scholar

  • Hu, B.Y. & Zhang, S.C. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat. Protoc. 4, 1295–1304 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  • Cimadamore, F. et al. Nicotinamide rescues human embryonic stem cell-derived neuroectoderm from parthanatic cell death. Stem Cells 27, 1772–1781 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  • Clarke, L. & van der Kooy, D. Low oxygen enhances primitive and definitive neural stem cell colony formation by inhibiting distinct cell death pathways. Stem Cells 27, 1879–1886 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  • Cho, M.S., Hwang, D.Y. & Kim, D.W. Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale. Nat. Protoc. 3, 1888–1894 (2008).

    Article CAS PubMed Google Scholar

  • Perrier, A.L. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 101, 12543–12548 (2004).

    Article CAS PubMed Google Scholar

  • Li, T.S. & Marban, E. Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells 28, 1178–1185 (2010).

    Article CAS PubMed PubMed Central Google Scholar

  • Kelly, C.M. et al. Neonatal desensitization allows long-term survival of neural xenotransplants without immunosuppression. Nat. Methods 6, 271–273 (2009).

    Article CAS PubMed Google Scholar

  • Erecinska, M. & Silver, I.A. Tissue oxygen tension and brain sensitivity to hypoxia. Respir. Physiol. 128, 263–276 (2001).

    Article CAS PubMed Google Scholar

  • Csete, M. Oxygen in the cultivation of stem cells. Ann. NY Acad. Sci. 1049, 1–8 (2005).

    Article CAS PubMed Google Scholar

  • Simon, M.C. & Keith, B. The role of oxygen availability in embryonic development and stem cell function. Nat. Rev. Mol. Cell Biol. 9, 285–296 (2008).

    Article CAS PubMed PubMed Central Google Scholar

  • Pistollato, F., Chen, H.L., Schwartz, P.H., Basso, G. & Panchision, D.M. Oxygen tension controls the expansion of human CNS precursors and the generation of astrocytes and oligodendrocytes. Mol. Cell Neurosci. 35, 424–435 (2007).

    Article CAS PubMed Google Scholar

  • Chen, H.L. et al. Oxygen tension regulates survival and fate of mouse central nervous system precursors at multiple levels. Stem Cells 25, 2291–2301 (2007).

    Article PubMed Google Scholar

  • Covello, K.L. et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20, 557–570 (2006).

    Article CAS PubMed PubMed Central Google Scholar

  • Gustafsson, M.V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005).

    Article CAS PubMed Google Scholar

  • Forristal, C.E., Wright, K.L., Hanley, N.A., Oreffo, R.O. & Houghton, F.D. Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 139, 85–97 (2010).

    Article CAS PubMed PubMed Central Google Scholar

  • Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T. & Yamanaka, S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5, 237–241 (2009).

    Article CAS PubMed Google Scholar

  • Mohyeldin, A., Garzon-Muvdi, T. & Quinones-Hinojosa, A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7, 150–161 (2010).

    Article CAS PubMed Google Scholar

  • Morrison, S.J. et al. Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J. Neurosci. 20, 7370–7376 (2000).

    Article CAS PubMed Google Scholar

  • Studer, L. et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci. 20, 7377–7383 (2000).

    Article CAS PubMed Google Scholar

  • Milosevic, J. et al. Low atmospheric oxygen avoids maturation, senescence and cell death of murine mesencephalic neural precursors. J. Neurochem. 92, 718–729 (2005).

    Article CAS PubMed Google Scholar

  • Storch, A. et al. Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp. Neurol. 170, 317–325 (2001).

    Article CAS PubMed Google Scholar

  • Maciaczyk, J., Singec, I., Maciaczyk, D. & Nikkhah, G. Combined use of BDNF, ascorbic acid, low oxygen, and prolonged differentiation time generates tyrosine hydroxylase-expressing neurons after long-term in vitro expansion of human fetal midbrain precursor cells. Exp. Neurol. 213, 354–362 (2008).

    Article CAS PubMed Google Scholar

  • Akundi, R.S. & Rivkees, S.A. Hypoxia alters cell cycle regulatory protein expression and induces premature maturation of oligodendrocyte precursor cells. PLoS One 4, e4739 (2009).

    Article PubMed PubMed Central Google Scholar

  • Li, D., Marks, J.D., Schumacker, P.T., Young, R.M. & Brorson, J.R. Physiological hypoxia promotes survival of cultured cortical neurons. Eur. J. Neurosci. 22, 1319–1326 (2005).

    Article PubMed Google Scholar

  • Stacpoole, S.R. et al. Derivation of neural precursor cells from human ES cells at 3% O(2) is efficient, enhances survival and presents no barrier to regional specification and functional differentiation. Cell Death Differ. 18, 1016–1023 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  • Siddiq, A. et al. Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J. Neurosci. 29, 8828–8838 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  • Yan, Y. et al. Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23, 781–790 (2005).

    Article CAS PubMed PubMed Central Google Scholar

  • Li, X.J. et al. Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells 26, 886–893 (2008).

    Article CAS PubMed PubMed Central Google Scholar

  • Joannides, A.J. et al. A scaleable and defined system for generating neural stem cells from human embryonic stem cells. Stem Cells 25, 731–737 (2007).

    Article CAS PubMed Google Scholar

  • Vallier, L. Serum-free and feeder-free culture conditions for human embryonic stem cells. Methods Mol. Biol. 690, 57–66 (2011).

    Article CAS PubMed Google Scholar

  • Cho, M.S. et al. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 105, 3392–3397 (2008).

    Article CAS PubMed Google Scholar

  • Svendsen, C.N. et al. A new method for the rapid and long term growth of human neural precursor cells. J. Neurosci. Methods 85, 141–152 (1998).

    Article CAS PubMed Google Scholar

  • Trotti, D., Danbolt, N.C. & Volterra, A. Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol. Sci. 19, 328–334 (1998).

    Article CAS PubMed Google Scholar

  • Behl, C. & Moosmann, B. Oxidative nerve cell death in Alzheimer's disease and stroke: antioxidants as neuroprotective compounds. Biol. Chem. 383, 521–536 (2002).

    Article CAS PubMed Google Scholar

  • Wright, W.E. & Shay, J.W. Inexpensive low-oxygen incubators. Nat. Protoc. 1, 2088–2090 (2006).

    Article CAS PubMed Google Scholar

  • Allen, C.B., Schneider, B.K. & White, C.W. Limitations to oxygen diffusion and equilibration in in vitro cell exposure systems in hyperoxia and hypoxia. Am. J. Physiol. Lung Cell Mol. Physiol. 281, L1021–L1027 (2001).

    Article CAS PubMed Google Scholar

  • Wion, D., Christen, T., Barbier, E.L. & Coles, J.A. PO2 matters in stem cell culture. Cell Stem Cell 5, 242–243 (2009).

    Article CAS PubMed Google Scholar

  • Hartung, O., Huo, H., Daley, G.Q. & Schlaeger, T.M. Clump passaging and expansion of human embryonic and induced pluripotent stem cells on mouse embryonic fibroblast feeder cells. Curr. Protoc. Stem Cell Biol. 14, 1C.10.1–1C.10.15 (2010).

    Article Google Scholar

  • Patani, R. et al. Activin/Nodal inhibition alone accelerates highly efficient neural conversion from human embryonic stem cells and imposes a caudal positional identity. PLoS One 4, e7327 (2009).

    Article PubMed PubMed Central Google Scholar

  • Moe, M.C. et al. Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons. Brain 128, 2189–2199 (2005).

    Article PubMed Google Scholar

  • Bouhon, I.A., Joannides, A., Kato, H., Chandran, S. & Allen, N.D. Embryonic stem cell-derived neural progenitors display temporal restriction to neural patterning. Stem Cells 24, 1908–1913 (2006).

    Article CAS PubMed Google Scholar

  • Cummins, T.R., Rush, A.M., Estacion, M., Dib-Hajj, S.D. & Waxman, S.G. Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat. Protoc. 4, 1103–1112 (2009).

    Article CAS PubMed Google Scholar

  • Molleman, A. Patch Clamping: An Introductory Guide to Patch Clamp Electrophysiology (John Wiley, 2003).

  • Efficient derivation of NPCs, spinal motor neurons and midbrain dopaminergic neurons from hESCs at 3% oxygen (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Corie Satterfield

    Last Updated:

    Views: 6549

    Rating: 4.1 / 5 (62 voted)

    Reviews: 85% of readers found this page helpful

    Author information

    Name: Corie Satterfield

    Birthday: 1992-08-19

    Address: 850 Benjamin Bridge, Dickinsonchester, CO 68572-0542

    Phone: +26813599986666

    Job: Sales Manager

    Hobby: Table tennis, Soapmaking, Flower arranging, amateur radio, Rock climbing, scrapbook, Horseback riding

    Introduction: My name is Corie Satterfield, I am a fancy, perfect, spotless, quaint, fantastic, funny, lucky person who loves writing and wants to share my knowledge and understanding with you.